منابع مشابه
Random Matrix Theory and Classical Statistical Mechanics . I . Vertex Models
A connection between integrability properties and general statistical properties of the spectra of symmetric transfer matrices of the asymmetric eight-vertex model is studied using random matrix theory (eigenvalue spacing distribution and spectral rigidity). For Yang-Baxter integrable cases, including free-fermion solutions, we have found a Poissonian behavior, whereas level repulsion close to ...
متن کاملIrreversibility in Classical Mechanics
An explanation of the mechanism of irreversible dynamics was offered. The explanation was obtained within the framework of laws of classical mechanics by the expansion of Hamilton formalism. Such expansion consisted in adaptation of it to describe of the nonpotential interaction of a systems. The procedure of splitting of a system into equilibrium subsystems, presentation of subsystem’s energy ...
متن کاملClassical Mechanics
here xi = (xi1, . . . , xid) are coordinates of the i-th particle and ∂xi is the gradient (∂xi1 , . . . , ∂xid); d is the space dimension (i.e. d = 3, usually). The potential energy function will be supposed “smooth”, i.e. analytic except, possibly, when two positions coincide. The latter exception is necessary to include the important cases of gravitational attraction or, when dealing with ele...
متن کاملThe equivalence principle in classical mechanics and quantum mechanics ∗
We discuss our understanding of the equivalence principle in both classical mechanics and quantum mechanics. We show that not only does the equivalence principle hold for the trajectories of quantum particles in a background gravitational field, but also that it is only because of this that the equivalence principle is even to be expected to hold for classical particles at all. While the equiva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1968
ISSN: 0010-3616,1432-0916
DOI: 10.1007/bf01646269